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Abstract. We investigate the dynamical properties of the 1-D Ising-like Hamiltonian taking into account
short and long range interactions, in order to predict the static and dynamic behavior of spin crossover
systems. The stochastic treatment is carried out within the frame of the local equilibrium method [1].
The calculations yield, at thermodynamic equilibrium, the exact analytic expression previously obtained
by the transfer matrix technique [2]. We mainly discuss the shape of the relaxation curves: (i) for large
(positive) values of the short range interaction parameter, a saturation of the relaxation curves is observed,
reminiscent of the behavior of the width of the static hysteresis loop [3]; (ii) a sigmoidal (self-accelerated)
behavior is obtained for large enough interactions of any type; (iii) the relaxation curves exhibit a sizeable
tail (with respect to the mean-field curves) which is clearly associated with the transient onset of first-
neighbor correlations in the system, due to the effect of short-range interactions. The case of negative
short-range interaction is briefly discussed in terms of two-step properties.

PACS. 64.60.-i General studies of phase transitions – 05.70.Ln Nonequilibrium and irreversible
thermodynamics – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)

1 Introduction

Pioneering works on the dynamics of spin-crossover solids
have pointed out the role of interactions on the shape
of relaxation curves, i.e. on the time dependence of
the metastable state fraction [4,5] after photo-excitation
of the system (according to the so-called LIESST
effect [6–9]. Both phenomenologic mean-field model [4]
and dynamic Monte Carlo simulations [10] have been re-
ported to describe the experimental data. The typical fea-
ture of a self-accelerated relaxation giving the relaxation
curves a sigmoidal shape [4,5,11] was assigned to the ef-
fect of interactions. In addition, a “tail” was observed and
attributed to the transient onset of correlations. This tail,
of course, was not obtained in the mean-field approach.

The purely molecular aspect of the relaxation has also
received much attention, and the simple idea of a ther-
mally activated process in a large temperature interval
(say, above 25 K) was developed for the examples of
diluted complexes [4]. Accordingly, the dynamic choice
which was made to establish the first microscopic dy-
namic model of spin-crossover solids [12] was Arrhenius-
? This work is dedicated to the memory of our friend Profes-
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like, rather than the widely accepted Glauber choice [13].
This choice was crucial in order to reproduce the exper-
imental non-linear effects, i.e. the sigmoidal relaxation
curves observed in the range 30-60 K.

The microscopic dynamic model has been treated so
far in the mean-field approach. The present report is de-
voted to the 1-D problem, using an analytical method
adapted from Huang [1] which enables the effect of corre-
lations to be taken into account. Following recent work [3],
we combine short-range and long-range interactions. In [3]
the static 1-D case was solved exactly, using the analytical
transfer matrix method, and the present work can be con-
sidered as its dynamic extension. The main results of [3]
are summarized as follows: (i) thermal hysteresis may oc-
cur due to the combined effect of short- and long-range
interactions; (ii) the shape of the hysteresis loop changes
from “S” to “Z” on increasing the ratio of the short-range
interaction; (iii) on (mathematically) increasing the short-
range interaction parameter, the shape of the hysteresis
loop tends to a limiting Z-shaped curve, the width of which
closely depends on the long-range parameter.

The microscopic models developed for cooperative
spin-crossover solids are based on the Ising-like Hamil-
tonian, following the pioneering work of Wajnsflasz and
Pick [14]. Such a two-state model can be viewed as
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a simple Ising model under an applied field (a
temperature-dependant field to account for the different
degeneracies of the levels [15]). In the dynamic Glauber
approach [13], the “spins” are assumed to interact with
the thermal bath, which causes them to flip randomly
in time. The mean-field version of the two-level dynamic
problem [12] led exactly to the phenomenological formula
given by Hauser, Spiering and Gütlich [4] for the sig-
moidal relaxation. Among models including correlations,
Huang [1] first applied the Bethe-Peierls method to solve
the Glauber problem for 1-D Ising systems under a mag-
netic field, and then he extended it to a Ising model for
any dimension D. Here we apply his treatment to a 1-D
Ising-like system which combines short- and long-range
interactions.

It should be added that analytical treatments are
suited to simulate the low-temperature properties of sys-
tems possessing the macroscopic energy barriers associ-
ated with the long-range interactions; alternative Monte
Carlo simulations would require considerable computer
times in such a case.

2 1-D Ising-like model revisited

In the Ising like model, the two states of the spin crossover
molecule are represented by a fictious spin 1, with two
eigenstates ±1, with respective degeneracies g+ and g−.
In the spin crossover systems, the values +1 and −1 are
respectively associated with the high-spin (HS) and low-
spin (LS) states.

The 1D Hamiltonian including long- and short-range
interactions, writes (after [3]):

H = −J
∑

sisi+1 −
(

1
2
kBT ln

g+

g−
−∆+G〈s〉

)∑
i

si.

(2.1)

Where: 〈s〉 = m is the net magnetization, J and G are
the short and long range interactions respectively, 2∆ is
the energy difference E(HS)-E(LS) for isolated molecules.
g+/g− is the degeneracy ratio between the HS and LS
states and T the temperature. The ratio g+/g− may be
quite large (up to a few thousands) because it involves
both the spin degeneracies and the density of vibrational
states (see [16] and Refs. included). The Ising-like problem
is reduced to the “pure Ising” one under the effective field:

∆eff =
kT

2
ln (g+/g−)−∆+Gm (2.2)

The partition function of the 1-D “pure Ising” sys-
tem is obtained by the well-known transfer matrix tech-
nique [2], and the free energy writes:

F =
1
2
Gm2 − kT lnZ. (2.3)

The self-consistent solution of the problem is obtained
by minimising the free energy with respect to m. It writes:

m =
sinh b√

sinh2 b+ e−4g
(2.4)

where

b = β

(
Gm+

kBT

2
ln
g+

g−
−∆

)
(2.5)

g = βJ. (2.6)

The high spin fraction of molecules (nH) is related to
the magnetization m by:

nH =
1 +m

2
· (2.7)

The static properties of this model in the case J > 0
have been studied by Linares et al. [3]: thermal hystere-
sis loops can occur due to the synergetic effect of short-
and long-range interactions; the width of the thermal hys-
teresis saturates upon increasing short range interaction
parameter; for large short-range interactions the thermal
hysteresis loop becomes square-shaped, in agreement with
the available experimental data [17].

We analyze here the conditions required for the first-
order transition (spin-transition) to occur in the 1-D sys-
tems. We follow a general method recently introduced [18]
which consists in comparing the equilibrium temperature
of the Ising-like system (such that m = 0, i.e. equipopu-
lated HS and LS states), given by:

kTeq =
2∆

ln (g+/g−)
, (2.8)

and the ordering (Curie) temperature (TC) of the asso-
ciated “pure Ising” system (g+ = g− = 1, ∆ = 0). The
first-order transition occurs through the reversal of the
effective field at a temperature for which the pure Ising
system is ordered, thus leading to a discontinuous varia-
tion of order parameter. Consequently, the condition for
obtaining the first-order transition writes:

TC > Teq. (2.9)

It is easily shown that this condition, for a given value
of the equilibrium temperature, leads to a threshold value
for the interaction parameter. For example, in mean-field
treatment (or in the particular case of the pure long range
interaction, where G is substituted for zJ), the condition
writes:

zJ >
2∆

ln g+/g−
, (2.10)

where J is the nearest-neighbor interaction, and z the
number of these neighbors. Such a condition is found
as well in the formally equivalent regular solution model
of the spin transition [19] treated in the Bragg-Williams
approach.

The determination of the Curie temperature of the
1-D pure Ising system combining short- and long-range
interactions can be obtained using the adaptation of equa-
tion (2.4) to the pure Ising case:

m =
sinhβGm√

sinh2 βGm+ e−4βJ
· (2.11)
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Fig. 1. Phase diagram for the 1-D Ising model (g+ = g− =
1,∆ = 0) taking into account both long range (G = 80 K) and
short range interactions. Full line corresponds to the the sec-
ond order transition branch, and triangles concerns the first
order transition. C is the tricritical point. This pure Ising
phase diagram is used (see text) for determining the occur-
rence condition of the first-order transition of the Ising-like
system: the representation point (J, Teq) should belong to the
ordered phase domain. For G = 0 the borderline is TC(J) = 0

The Curie temperature is derived from an expansion of
the previous equation around m = 0, giving βC = 1/kTC

through the implicit equation:

βCGe2βCJ = 1. (2.12)

Fortunately, the above equation explicitly provides J as a
function of TC:

J =
kTC

2
ln
(
kTC

G

)
(2.13)

The resolution of equation (2.11) provides a second-
or a first-order transition, according to the values of the
interactions J and G.

For a complete discussion, we have reported in Figure 1
the computed curve TC(J) for a given G value, where the
second- and first-order branches appear, separated by a
tricritical point C (this first or second order nature does
not affect qualitatively the discussion which follows).

Figure 1 is interpreted as well as a phase diagram with
domains for “ferromagnetic” and “paramagnetic” states
separated by the borderline TC(J) at fixed G. Then, the
Ising-like system is represented by a point at coordinates
Tequil, J (at fixed G), and the occurrence condition for the
first-order transition, according to equation (2.9), is sim-
ply that this representative point belongs to the domain of
the ferromagnetic state. Therefore we now briefly describe
the phase diagram of the pure 1-D Ising system.

2.1 The short-range interaction J > 0

This is the case already investigated by Linarès et al. [3].
The phase diagram of the pure Ising system is very simple,
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Fig. 2. High spin fraction (nH) and HS− LS fraction (nHL +
nLH) versus temperature, showing a two-step conversion in the
domain II of Figure 1, with −(G+∆)/2 < J < −G/2. Param-
eter values are J = −60 K, G = 80 K, ∆ = 200 K,

g+
g−

= 150.

with TC an increasing function of J and G, as expected
intuitiously. The occurrence condition for the first-order
transition of the Ising-like system Tequil < TC, can be
expressed analytically as:

J > JC =
∆

ln g+/g−
ln
(

2∆
G ln g+/g−

)
· (2.14)

This equation explicits the synergetic effect of G and J ,
empirically observed by Linarès et al. [3]. For G = 0, JC

diverges and the 1-D Ising system does not order.
For an insufficient G value (dTC/dG is also positive)

TC is too low, and the first-order transition does not oc-
cur. The effect of an increased short-range interaction is
to raise TC, in excess of Tequil, and then the first-order
transition occurs above a threshold value JC.

2.2 The short-range interaction J < 0.

We now consider “antiferromagnetic” short-range interac-
tions, i.e. negative, which stabilize the HS− LS pairs with
respect to the HS−HS, LS− LS pairs. The Ising chains
with competing long range ferromagnetic and short range
antiferromagnetic interactions were studied by Nagle [20].
For the spin crossover problem the “antiferromagnetic”
interaction in presence of a long range “ferromagnetic”
interaction was introduced to explain the experimental
examples where the spin transition occurs in two steps
(as termed in several studies [21–24]). Steric speculations
have been proposed for this negative interaction [22].

The two-step transition (according to numerical calcu-
lations) occurs for J < −G/2, when the pure Ising system
does not order ferromagnetically. A plateau (as shown in
Fig. 3) is obtained around m = 0 (or nH = 1/2) because
the alternate state HS− LS−HS... is stabilised and be-
comes a well-isolated groundstate for the pure Ising sys-
tem (see Figs. 2 and 3).
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Fig. 3. High spin fraction (nH) and HS− LS fraction (nHL +
nLH) versus temperature, showing a two-step curve with a first-
order transition and a conversion. Parameter values are J =
−100 K, G = 80 K, ∆ = 200 K,

g+
g−

= 150.

For J < − (G+∆) /2 the plateau starts from T = 0,
and the spin transition is termed a “half-transition”. The
above condition was derived from the expression of the
low-temperature limit of equation (2.4), written here:

lim
β→+∞

m =
−1√

1 + eβ(4|J|+2Gm−2∆)
· (2.15)

The requirements for a complete two-step transition
are now analysed. The low-temperature ground state LS
(m = −1) is needed. It requires −(∆ + G)/2 < J . The
conditions are then summarised as:

−(∆+G)/2 < J < −G/2. (2.16)

The complete phase diagram describing the two-step
transition is presumably complex, as has been shown in
mean-field investigation of the two-sublattice problem [15]

3 Dynamic effects

In the stochastic Glauber approach [13] the spin-flips from
si → −si are induced by the thermal bath, with transition
rates W (si).

Following [13] we consider P ({s} ; t) the probability of
observing the system in the configuration (s1, ..., sN ) =
{s} at time t. The time evolution of P ({s} ; t) is given by
the master equation:

∂P ({s} , t)
∂t

= −
N∑
j=1

Wj(sj)P ({s}j , sj ; t)

+
N∑
j=1

Wj(−sj)P ({s}j ,−sj; t) (3.1)

where: ∂P ({s},t)
∂t is the flux of the probability and {s}j

denotes the configuration of all spins excepted spin sj .

The expectation value of the j-th spin is defined as:

〈sj〉 =
∑
{s}

sjP ({s} ; t) , (3.2)

where the sum is taken over all spin configurations.
The detailed balance condition at equilibrium writes:

W (si)
W (−si)

=
Pe(s1, ...,−si, ..., sN )
Pe(s1, ..., si, ..., sN)

=
e−gsi(si−1+si+1)−bsi

egsi(si−1+si+1)+bsi
(3.3)

where Pe(s1, s2, ...sN ) ∼ e−βE(s1,...,si,...,sN) is the equilib-
rium probability and E(s1, ..., si, ..., sN ) the energy of the
spin configuration (s1, s2, ...sN ).

3.1 The dynamic choice

Several dynamic choices are possible according to equa-
tion (3.3) which only provides the ratio of the proba-
bilities of opposite transition rates. All possible choices
lead to the same stable and metastable states of the sys-
tem. Recently K. Boukheddaden et al. [12] have estab-
lished that the choice suited to the spin-crossover systems
was of the Arrhenius-type [25], rather than of the Glauber
type [13]. The main physical reason is due to the fact that
in spin-crossover systems, the dynamical process is essen-
tially thermally activated.

Following [12], we use the identity e±α = coshα ±
sinhα and the property that si(si−1 + si+1)/2 only takes
the values ±1 or 0. Then, the Arrhenius-type transition
rates are written:

WA(si) ∼ e−gsi(si−1+si+1)−bsi

= cosh b cosh (gsi(si−1 + si+1))

× (1− si tanh b)
(

1− 1
2
si(si−1 + si+1) tanh 2g

)
(3.4)

The spin-flip transition rate is finally transformed as:

WA(si) =
1
2τ

(x− six′)
∏
α=±1

(y − sisi+αy′) , (3.5)

with the following notations: x = cosh b, y = cosh g, x′ =
sinh b, y′ = sinh g.

We have introduced a time scale factor, 1/τ , resulting
from a thermally activated spin flip rate, of intramolecular
origin:

1
τ

=
1
τ0

e−βE
0
a , (3.6)

where 1/τ0 is the individual spin flip rate between the HS
to LS states, and E0

a is the intramolecular vibronic energy
barrier at energy gap ∆ = 0.
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The dynamical problem of the 1-D Ising-like system is
then formulated by introducing the expression (3.5) of the
WA(si) into the master equation (3.1). The calculation of
average magnetization m(t) leads to a set of 2N coupled
differential equations which involve all the correlations of
the system. Of course, the exact treatment is not tractable.
Then approximation methods such as mean-field [26], per-
turbation [27], or the local equilibrium [1] have been de-
veloped. We follow the latter, which is not restricted to
the case of small external field (here the temperature-
dependent field may be quite large).

3.2 The local equilibrium method (after [1])

This method is justified by the fact that the evolution
time for spin-correlation functions is much larger than the
individual spin-flip time. Let us consider a site s0 with
q nearest neighbors; we denote P (s0, n; t) the probability
for site s0 to be surrounded by n spins in the +1 state.
P (s0, n; t) is assumed to be in a local statistical equilib-
rium even if the total system is not at equilibrium.

The method follows by taking P (s0, n; t) given by
the Bethe-Peierls (BP) Hamiltonian. The cluster made
of the central site s0 and its q neighbors is considered,
and the BP Hamiltonian contains the exact contribution
of the isolated cluster, completed by an uniform field λ act-
ing on the q neighbors, representing the interaction with
the lattice. The BP Hamiltonian writes (with notations
defined in Eqs. (2.5,2.6)):

βHBethe = −gsi
q∑
j=1

sj − bsi − b
q∑
j=1

sj − βλ
q∑
j=1

sj . (3.7)

The occupation probabilities of the different states of
the cluster are:

P (si, n) = C

(
q
n

)
e−βH

Bethe(si,n), (3.8)

where (qn) = q!/n! (q − n)! is the configuration degeneracy
of a cluster having n out of the q neighbors in the +1
state. C is a normalisation constant, which at equilibrium
is the inverse of the canonical partition function. For such
a cluster, the probabilities of the possible two states of the
central spin are:

P (±1, n) = C

(
q
n

)
e±be−qλ

(
e2βλ

)n
e(b±g)(2n−q). (3.9)

The above probabilities are time dependant. For conve-
nience, we also make the following change of variables:

C± = Ce±be−qλ and z = e2βλ. (3.10)

For the 1-D system (q = 2), the probabilities of the
cluster states become:

P (±1, n; t) =
2

n (2− n)
C±(t)zn(t)e2(b±g)(n−1). (3.11)

The Bethe-Peierls model involves further equations:

2∑
n=0

∑
s0=±1

P (s0, n; t) = 1, (3.12)

which normalizes the probabilities;

m(t) =
2∑

n=0

(P (+1, n; t)− P (−1, n; t)) , (3.13)

which defines the local magnetization;

2∑
n=0

P (+1, n; t) =
1
2

[
2∑

n=0

n
∑
s0=±1

P (s0, n; t)

]
, (3.14)

which expresses that the probability of obtaining the spin
value +1 is the same at the central site s0 and at the
neighbor sites. This condition restores the homogeneity of
the system, i.e. makes the local and global magnetizations
identical [28].

From equations (3.11, 3.13 ) the following relations are
obtained:

1 = C+(t)
(
ze(b+g) + e−(b+g)

)2

+ C−(t)
(
ze(b−g) + e(g−b)

)2

(3.15)

m(t) = C+(t)
(
ze(b+g) + e−(b+g)

)2

− C−(t)
(
ze(b−g) + e(g−b)

)2

(3.16)

and from equation (3.14):

z(t)e2bC−(t)
C+(t)

=
(
ze(b+g) + e−(b+g)

zeb−g + eg−b

)
. (3.17)

Resolving the set of equations (3.15, 3.16), the nor-
malization factors can be written as a function of m(t)
and z(t):

C±(t) =
1±m(t)

2
(
zeb±g + e−(b±g)

)2 · (3.18)

Equations (3.17) and (3.18) allow a second-order equa-
tion for z(t) to be obtained. The positive root of this equa-
tion is:

z(t) =
e−2(b+g)

1−m
[
m+

√
e4g (1−m2) +m2

]
. (3.19)

By this way C±(t) and z(t) have been written as func-
tion of m(t).
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3.3 The two-site correlation function r(t)

The two-site correlation function r(t) is defined as:

r(t) =
1
N

∑
〈i,j〉

sisj =
N+ + − 2N+ − +N− −

N
(3.20)

where N+ +, N+ −, N− +, N− − are the number of pairs
with the possible 4 configurations. The corresponding
probabilities n++, n+ −, n− +, n− − are defined by:

n±± =
N±±
N
· (3.21)

The normalisation relations of one-and two-spin probabil-
ities follow:

n++ + n− − + n+ − + n− + = 1 (3.22)
n++ + n+ − = n+ (3.23)
n− + + n− − = n− (3.24)

From equations (3.20), (3.22), (3.23), (3.24), r(t) writes:

r(t) = 4n++ − 4n+ + 1. (3.25)

Taking into account that:

n+ =
2∑

n=0

P (+1, n; t) , (3.26)

and

n++ =
1
2

2∑
n=0

nP (+1, n; t) , (3.27)

and using the expressions of P (si, n; t), C±(t) and z(t)
given by the equations (3.11, 3.18, 3.19), we finally obtain:

r(t) =
2
(
m2 − 1

)
1 +

√
m2 + (1−m2) e4g

+ 1 · (3.28)

The time dependence of the HS− LS pair probability
follows:

n+− = n−+ =
1− r(t)

4
· (3.29)

For the spin-crossover problem, n+− (n−+) is de-
noted nHL (nLH) which represents the fraction of HS− LS
(LS−HS) pairs in the system.

Once r(t), C±(t), z(t) have been obtained, the master
equation can be explicited (as follows).

3.4 The evolution equation

The time evolution of the magnetization, using equa-
tions (3.1, 3.2), writes formally:

d 〈sj〉
dt

=
dm
dt

=
∑
{s}

sj
dP ({s}; t)

dt
= −2 〈sjW (sj)〉t .

(3.30)

In the local equilibrium approach, the sjW (sj) average
value is obtained via the probabilities P (±, n; t), by:

dm
dt

=
2∑

n=0

∑
sj=±1

sjW (sj)P (sj , n; t) . (3.31)

Following these calculations a simple evolution equation
is obtained for m(t):

dm
dt

=
1
τ

(
z(t)eb + e−b

)2 (
C−(t)eb − C+(t)e−b

)
. (3.32)

In the steady state, this equations exactly gives the static
Bethe-Peierls equation.

Substituting in equation (3.32) the expressions of C±
and z, given by equations (3.18, 3.19), the explicit form of
the evolution equation follows:

dm
dt

= − 1
τ0

e−βE
0
ae−2g

×
{
m cosh b− sinh b

√
m2 + (1−m2) e4g

}
(3.33)

with b, g defined in equations (2.5, 2.6).

3.5 Static limit

For dm
dt = 0, equation (3.33) yields:

m =
sinh b√

sinh2 b+ e−4g
. (3.34)

This exactly is the equation obtained by Linares
et al. [3] using the well-known transfer matrix method.
Such a result was expected, since the Bethe-Peierls model
gives the exact solution of an infinite chain in the two state
Ising model (as well as for the three-state s = ±1, 0 Ising
model [29]).

4 Results and discussion

We analyze here the shape of the relaxation curves of
the high-spin fraction at low temperatures (after photo-
excitation).

At low temperatures, we have 2 sinh b ' −e−b and
2 cosh b ' e−b, since β(E0

a + b) ' β
(
E0

a −∆+Gm
)
�

β(E0
a − b) ' β

(
E0

a +∆−Gm
)
. Then equation (3.33) can

be transformed as:

dm
dt
' − 1

2τ0
e−(βE0

a+b)
(
me−2g +

√
m2e−4g + (1−m2)

)
.

(4.1)

Because b depends on m, and due to the complex form
of equation (4.1), the general case is not analytically
tractable. Therefore we start with a few particular cases
(J or G = 0) for which the analytical resolution is
possible.
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Fig. 4. Relaxation curves of the high-spin fraction for different
positive values of the short range interaction J in the case
G = 0. Parameter values are: Ea = 1500 K, ∆ = 1563 K,

g+
g−

=

4675, T = 70 K, J = 0, 30, 80 K (from left to right side). The
arbitrary time unit is 1/τ0. The parameter values in this case
correspond to the chain compound [Fe(Htrz)2(trz)] BF4 [3,18].
It is interesting to note the tail effect on the relaxation as
well the sigmoidal shape which increases with the interaction
parameter J .

4.1 The long-range interaction case (J = 0)

In this case g = 0 and there only remains the long range
interaction, i.e. the mean field case. Only G > 0 has to be
considered, according to the elastic theory of long-range
interaction in spin-crossover solids [30]. The previously es-
tablished [12] equation is derived:

dm
dt

= − 1
2τ0

e−βE
0
a (m cosh b(m)− sinh b(m)). (4.2)

As already shown [12] in this low-temperature case, this
mean-field evolution equation is equivalent to the phe-
nomenological Hauser equation [4]:

dnH

dt
' −KnHe−αnH . (4.3)

The correspondence with the Hauser self-acceleration
parameter is:

α = 2βG. (4.4)

4.2 The J > 0 short-range case

A “ferromagnetic” interaction, with J > 0, favors pairs
in the same state, i.e. HS-HS and LS-LS pairs. It is then
expected that, starting from a saturated metastable HS
state, the relaxation to the stable LS state will be slowed
down at the beginning (m > 0). On the contrary, the
end of the relaxation will be accelerated by the effect of

0

0.5

1

0 50 100 150 200 250 300

n H

Time (arbitrary units)

J=0

J > 300 K

Fig. 5. The effect of a large J on the relaxation curves. From
left to right, J values are: 0, 30, 100, 300, 500 K. G = 100 K
and the other parameters are those of Figure 4. Note the sat-
uration effect in this relaxation curves for high values of J .
For example the J = 300 K and 500 K curves are almost
superimposed.

the cooperative interaction. This is a basic mechanism for
the self-accelerated relaxation, acting in the same sense
as the mean-field effect of long-range interaction (previous
section).

4.2.1 The “ferromagnetic” pure-short-range case
(G = 0, J > 0)

Figure 4 shows the relaxation behavior for this case. The
sigmoidal shape can be obtained, i.e. it does not require
the effect of long-range interaction, as expected from the
above qualitative approach. The sigmoidal shape, charac-
terized by an inflexion point, requires:

J >
kT

4
ln 2 = Jc. (4.5)

We now investigate the behavior of the relaxation
curves for large increasing values of J . Equation (3.34)
shows the saturation of dm/dt as function of g = J/kBT .
The limiting equation (for J →∞) is:

dm∞

dt
= − 1

2τ0
e−(βE0

a+b)
√

1−m2, (4.6)

and leads to a “saturation” behavior (also valid for G 6= 0,
see Fig. 5) which compares to the static saturation previ-
ously reported [3] for the width of the thermal hysteresis
loop.

4.2.2 The “ferromagnetic” general case (G > 0, J > 0)

For G > 0 the relaxation curves are systematically sig-
moidal for G > kT/2, see Figure 5. Also, dm/dt becomes
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Fig. 6. Time evolution of the HS− LS pair fraction (nHL(t))
corresponding to the case shown in Figure 4. G = 0, J =
0, 25, 50 K from top to bottom. The short range interaction
stabilizes the LS− LS− LS... phase at low temperature, and
therefore reduces the value of the maximum of nHL(t). The
arbitrary time unit is 1/τ0.

independent of J for βJ = g � 1. In this case the dynamic
properties only depend on the long-range interaction
parameter G, as shown by the limiting evolution equation:

dm∞

dt
= − 1

2τ0
e−β

�
E0

a+ kT
2 ln

�
g+
g−

�
−∆

�√
1−m2e−βGm.

(4.7)

This equation slightly differs from the mean-field ex-
pression [4,12]:(

dm
dt

)
MF

∼= −K (1 +m) e−βGm (4.8)

where K is a constant dependant on the coupling param-
eters, the crystal field splitting and the degeneracy ratio.

The dynamic behavior can be discussed with respect to
the time dependence of the pair occupation probabilities,
see Figure 6 where the ratio of HS− LS pairs (n+−+n−+ )
is shown for different values of the short-range interaction
parameter J. The curves exhibit maxima which approxi-
matively correspond to the transient situation m(t) = 0.
An increased interaction J lowers the maximum of the
correlation curve because it more strongly stabilises the
HS−HS and LS− LS pairs with respect to the HS− LS
pairs. Also, it slows down the onset of these HS− LS corre-
lations which are involved in the relaxation of m(t). The
relationship between the hindrance of these correlations
and the initial slowing down of the relaxation of m(t)
(compare Figs. 4 and 6) illustrates the coupling effect be-
tween r(t) and m(t) which governs the evolution of the
system.

Also, the effect of the long-range interaction on the cor-
relations can be discussed, see Figures 5 and 7. The effect
of the long-range interaction is to increase the life-time of
the metastable state HS−HS−HS..., and to “stabilise”
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Time (arbitrary units)

J=0

J=50 K

Fig. 7. Effect of the short-range interaction on the time-
dependence of nHL(t); G = 100 K, same case as Figure 5.
From top to bottom the J values are: 0, 25, 50 K. The arbi-
trary time unit is 1/τ0. Comparison to Figure 6 shows that the
effect of J is enhanced by the presence of G 6= 0.

the pair probabilities, tending to give them the random
values consistent with the transient m(t) value.

4.3 The J < 0 short-range case

An “antiferromagnetic” short-range interaction, with
(J < 0), favors the HS− LS with respect to symmetric
pairs. It competes against the long range “ferromagnetic”
interaction, thus leading (as shown above) to static two-
step transitions. Accordingly, we expect transient behav-
iors of nHS(t), occurring in two steps, as suggested by pre-
vious Monte Carlo simulations [10] on 3-D systems.

4.3.1 The pure short-range case (G = 0, J < 0)

In the absence of long-range interactions, b becomes inde-
pendent of m, and we conveniently re-write equation (4.1)
in the following form:

dm
dt
' − 1

2τ0
e−(βE0

a+b)
(
me2|g| +

√
m2e4|g| + (1−m2)

)
.

(4.9)

This equation shows that for m ∼= 1, the short-range
“antiferromagnetic” coupling tends to speed up the decay
of the HS fraction, the rate of which is limited by the
maximum value 1/τ0. The equation also shows that m =
±1 are stationary values for m(t). However, at variance
from the cooperative case, there is no saturation effect
for large |J | values. Indeed, in this case |g| � 1 values,
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Fig. 8. Relaxation curves of high-spin fraction in a two-step
transition case for different values of the “antiferromagnetic”
short-range interaction. The parameter values are: T = 25 K,
∆ = 1563 K, g+/g− = 4675, Ea = 1500 K, and from left to
right: J = −35, −28, −23 K respectively. The arbitrary time
unit is 1/τ0.

equation (4.9) transforms:

dm
dt
' − 1

2τ0
e−(βE0

a+b)me2|g|. (4.10)

Then, the asymptotic state at large times t is the state
m = 0 corresponding to nHL + nLH = 1; the ground state
of a pair is the HS− LS state, irrespective of the state of
the surroundings.

An analytical investigation shows the absence of in-
flexion points on the m(t) curve, which consequently does
not exhibit (for G = 0) the sigmoidal character for any
J < 0.

4.3.2 The general case (G > 0, J < 0)

The long-range and short-range interactions compete
against each other, both at short and long times. At short
times, starting from m ∼= 1, the long-range interaction
tends to slow down the relaxation, while the short-range
interaction tends to speed it up. At long times, the long-
range interaction tends to speed up the relaxation towards
the LS state, while the short-range interaction tended
to stabilize the intermediate HS− LS state of the pairs.
Then, moderate |J | values will slow down the relaxation to
the LS− LS state, i.e. the relaxation of m(t) towards zero.
On increasing |J | value, the approach to the stabilisation
of the m = 0 (nH = 0.5) state will induce a two-step shape
in the m(t) curve, as shown in Figure 8, in agreement with
the Monte Carlo simulations reported in [10].

5 Perspectives and conclusion

The relaxation behavior of the system depends on the ini-
tial values of both the HS fraction, m(t = 0) and the first-
neighbor correlation r(t = 0). In more general terms, it
depends on the past thermo-optical history of the system.
First-neighbor correlations, at least, are for this an impor-
tant parameter. Convincing experiments on the effect of
the building up of correlations, previous to the relaxation
process, have been reported in [10], together with their
successful modelling by Monte Carlo simulations. Obvi-
ously a similar work is possible using the present analyt-
ical formulation. Since even more information should be
obtained from dilute systems, an extension of the model
is in progress.

In the present work, the Huang local equilibrium ap-
proach has been applied to the 1-D lattice. The question of
dimensionality in spin-crossover systems in not straight-
forward, since the mechanism for the short-range interac-
tion is not yet solved. Qualitatively, the short-range in-
teraction is usually considered as “steric” in nature, i.e.
electrostatic far beyond the dipole approximation, but it
might also come from the chemical bonding in the case
of polymeric materials which also exist in 1-D and 2-D
lattices. Quite recently, 1-D polymeric systems have been
prepared, pure and diluted in a spin-crossover inactive ho-
mologous [31]. Their dynamic properties are under study
and will be analysed in the frame of the present model,
with a special interest in the behavior of the correlations.
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